ЗЛОБИН АНДРЕЙ ВАЛЕРЬЕВИЧ

ПРОФИЛАКТИКА И ТЕРАПИЯ НАРУШЕНИЙ ОБМЕНА ВЕЩЕСТВ У КРУПНОГО РОГАТОГО СКОТА КОМПЛЕКСНЫМИ ПРЕПАРАТАМИ ФЕРРАМИНОВИТ И СТИМУЛИН

06.02.01 – диагностика болезней и терапия животных, патология, онкология и морфология животных

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата ветеринарных наук

Работа выполнена федеральном государственном бюджетном В образовательном образования «Казанская учреждении высшего государственная академия ветеринарной медицины имени Н.Э. Баумана»

Алимов Азат Миргасимович Научный руководитель:

доктор ветеринарных наук, профессор

Семенов Владимир Григорьевич – доктор Официальные оппоненты:

> профессор, биологических наук, профессор кафедры морфологии, акушерства и терапии ФГБОУ BO «Чувашская государственная

сельскохозяйственная академия»

Ежков Владимир Олегович доктор ветеринарных наук, доцент, заведующий отделом бионанотехнологий В земледелии животноводстве Татарского научноисследовательского института агрохимии обособленного структурного почвоведения -«Федеральный ФГБУН подразделения исследовательский центр «Казанский научный

центр Российской академии наук»

ФГБОУ ВО «Ульяновский государственный Ведущая организация: аграрный университет имени П.А. Столыпина»

Защита состоится «21» июня 2018 года, в « 12^{00} » часов на заседании при совета 220.034.01 ФГБОУ ВО «Казанская диссертационного Л государственная академия ветеринарной медицины имени Н.Э. Баумана» по адресу: 420029, г. Казань, Сибирский тракт, 35.

диссертацией можно ознакомиться в библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» и на сайте www.ksavm.senet. ru.

Автореферат разослан « » 2018 года и размещён на сайтах http://www.vak.ed.gov.ru/ и www.ksavm.senet. Ru.

Учёный секретарь диссертационного совета

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. За последние десятилетия продуктивные возможности молочных коров во многих хозяйствах нашей страны значительно выросли в результате систематического улучшения генофонда, условий кормления и содержания. Однако многочисленные исследования показывают, что с ростом продуктивности коров увеличивается количество незаразных болезней животных, в первую очередь, болезней обмена веществ (А.М. Алимов, 2005, 2013; А.В. Жаров, Ю.П. Жарова, 2012; С.В. Енгашев и др.,2015; И.И. Калюжный, Н.Д. Баринов, 2015).

В условиях резко увеличивающихся физиологических нагрузок на животных при малейших нарушениях технологии создаются предпосылки для воздействия стрессовых факторов. В итоге отмечается снижение молочной и мясной продуктивности, ослабление связочного аппарата, нарушение воспроизводительной способности (М.Г. Зухрабов, Т.Д. Власьева, 2008; А.М. Гертман, К.Х. Папуниди, 2010; В.М. Руколь, А.А. Стекольников, 2011; А.А. Алиев, З.М. Джамбулатов, 2012; С.А. Позов и др., 2014).

Частота возникновения болезней обмена веществ у животных и наносимый ущерб скотоводству диктуют необходимость поиска новых эффективных и комплексных препаратов, профилактирующих и корректирующих обмен веществ, повышающих резистентность организма животных (Г.Ф. Кабиров, Н.З. Хазипов, 2004; I.R. Tizard, 2009; И.И. Кочиш и др., 2011; И.А. Егоров и др., 2013).

Полиэтиологичность обменных нарушений определяет необходимость использования комплексных препаратов на основе природных соединений, которые лучше усваиваются организмом и дают более высокий эффект.

Степень разработанности проблемы. Особое значение приобретают знания ветеринарными специалистами причин и условий возникновения заболеваний при нарушении обмена веществ у высокопродуктивных животных, а также механизмы развития клинических признаков. Профилактика и лечение нарушений обмена веществ могут быть целенаправленными и эффективными, если их осуществлять с учетом этиологии и патогенеза конкретно диагностируемой патологии.

Для коррекции метаболизма у сельскохозяйственных животных предлагаются различные препараты и кормовые добавки. Многими учеными изучена возможность использования в лечении и профилактике болезней обмена веществ лекарственных препаратов, содержащих макро- и микроэлементы. Установлено, что такие препараты положительно влияют, как на внутреннее состояние организма, так и на общее его развитие (М.Ш. Алиев, 1997; В.А. Антипов и др., 2006, 2012; И.А. Яппаров, 2011).

В связи с вышеизложенным, возникла необходимость проведения исследований, направленных на уточнение вопросов патогенеза нарушения обмена веществ у крупного рогатого скота в сельскохозяйственных предприятиях Удмуртской Республики (УР) с учетом условий их кормления и

содержания. Остается актуальным разработка методов и средств коррекции, нарушений обменных процессов, путем применения комплексных препаратов.

Выполненная работа является составной частью научных исследований, проводимых кафедрой биологической и органической химии ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» (НИОКР ТР: AAAA-A17-117033110121-5).

Цель и задачи исследований. Целью настоящей работы являлось изучение терапевтических свойств инновационных комплексных препаратов Ферраминовит и Стимулин и оценка их эффективности при нарушениях обмена веществ и других патологий незаразной этиологии у крупного рогатого скота.

Для достижения этой цели были поставлены следующие задачи:

- 1. Изучить распространение заболеваний с нарушениями обмена веществ среди крупного рогатого скота УР;
- 2. Изучить обменные процессы у коров и влияние препарата Ферраминовит на их организм при отдельных гипомикроэлементозах;
- 3. Изучить влияние препарата Ферраминовит на морфологический и биохимический состав крови новорожденных телят;
- 4. Оценить эффективность применения препаратов Ферраминовит и Ферранимал-75 на телятах при комплексном лечении анемии и диспепсии;
- 5. Определить эффективность препарата Стимулин при его использовании молодняку крупного рогатого скота для коррекции нарушений обменных процессов и показателей роста.

Научная новизна работы. Впервые путем проведения анализа состояния обмена веществ у крупного рогатого скота в современных условиях на территории УР выявлено широкое распространение и полиэтиологичность патологий обмена веществ у животных различных возрастных групп, обусловленных биогеохимическими особенностями территории.

Изучением влияния комплексных препаратов Ферраминовит и Стимулин на клинико-биохимические показатели сельскохозяйственных животных (коров и телят) доказана их профилактическая и терапевтическая эффективность при различных нарушениях обменных процессов.

Установлено, что применение инновационных препаратов Ферраминовит и Стимулин коровам и телятам оказывало положительное влияние на их морфологические, биохимические и иммунологические показатели, тем самым, способствовало коррекции нарушений белкового, углеводного и минерального обменов веществ, повышению резистентности и продуктивности животных.

Теоретическая и практическая значимость работы. На основе проведенных исследований установлена распространенность и полиэтиологичность заболеваний с нарушением обменных процессов у крупного рогатого скота в УР. Выявлено положительное влияние препаратов Ферраминовит и Стимулин на морфобиохимический и иммунобиологический статус крови у крупного рогатого скота при нарушениях обмена веществ.

Полученные результаты исследований использованы при подготовке двух нормативно-технических документов: «Временные ветеринарные правила по применению ферраминовита для коррекции нарушений обмена веществ, повышения резистентности, профилактики и лечения анемии у животных» и «Временные ветеринарные правила по применению стимулина для повышения резистентности и стимуляции роста животных», которые рассмотрены и одобрены научно-техническим советом Главного управления ветеринарии УР. Препараты Ферраминовит и Стимулин рекомендованы Главным управлением ветеринарии УР к широким производственным испытаниям в сельскохозяйственных предприятиях УР.

Основные положения, вытекающие из материалов диссертационной работы, используются в учебном процессе на кафедре биологической и органической химии ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н. Э. Баумана»; на факультете ветеринарной медицины ФГБОУ ВО «Ижевская государственная сельскохозяйственная академия». Результаты исследований и испытанные препараты нашли широкое применение в организации лечебно-профилактических мероприятий, проводимых при выявлении нарушений обмена веществ у крупного рогатого скота в сельскохозяйственных организациях Алнашского района УР.

Методология и методы исследований. Исследования проводились с использованием клинических, гематологических, биохимических, статистических методов, адекватных поставленным цели и задачам.

Методологические подходы обоснованы анализом отечественных и зарубежных публикаций по тематике исследований, современности методов и оборудования, анализе полученных результатов.

В работе применяли современные приборы и оборудование: микроскоп Minimed 501, рефрактометр ИРФ-454 Б 2М, фотометр фотоэлектрический КФК-3, фотометр лабораторный медицинский Bio Chem Sa, наборы реагентов для определения глюкозы, микроэлементов, мочевины.

При проведении исследований использованы статистические данные, клинические, гематологические и биохимические анализы значительного поголовья телят и коров в отдельных хозяйствах с охватом 60 голов, позволивших получить обоснованные результаты.

Биохимические и гематологические анализы проводили на основе методов, описанных в соответствующих руководствах.

Статистические методы – цифровой материал, полученный в результате исследований, подвергали вариационно-статистической обработке с применением критерия достоверности Стьюдента. Данные обрабатывали на персональном компьютере с использованием программы Microsoft Excel.

Библиографическое описание, использованных в диссертации литературных источников, осуществляли в соответствии с требованиями ГОСТ 7.1.-2003.

Основные положения, выносимые на защиту:

- нарушения обмена веществ имеют полиэтиологичный характер и широко распространены среди поголовья крупного рогатого скота УР, что обусловлено почвенными биогеохимическими особенностями её территории;
- использование препарата Ферраминовит коровам и телятам способствует восстановлению обменных процессов, стабилизирует гемопоэз, профилактирует анемию, в целом улучшает развитие новорожденных животных;
- комплексный препарат Ферраминовит, по сравнению с препаратом Ферранимал-75, оказывает более эффективное действие при лечении анемии у телят;
- использование препарата Стимулин молодняку крупного рогатого скота стабилизирует морфобиохимические показатели крови в рамках физиологических норм и стимулирует прирост живой массы.

Степень достоверности и апробация результатов. Достоверность результатов подтверждена фактическими экспериментальными данными, основанными на статистически значимых показателях и статистической обработкой с выведением критерия достоверности по Стьюденту. Различия считали статистически значимыми при p<0,01.

Материалы диссертационной работы были доложены и одобрены на Всероссийской научно-практической конференции «Ветеринарная медицина и зоотехния, образование, производство: актуальные проблемы» (г. Казань, 2014 г.); на Международной научно-практической конференции аспирантов и молодых ученых «Знания молодым: наука, практика и инновации» (г. Киров, 2015 г.); на Всероссийской научно-практической конференции «Научное и кадровое обеспечение АПК для продовольственного импортозамещения» (г. Ижевск, 2016г.); на научно-техническом совете Главного управления ветеринарии УР 26.07.2016 г.

Публикации. По теме диссертации опубликовано шесть научных работ, в том числе четыре статьи в журналах, рекомендованных ВАК Министерства образования и науки РФ.

Структура и объем диссертации. Диссертация изложена на 145 страницах компьютерного текста и состоит из следующих разделов: введения, обзора литературы, собственных исследований, заключения, списка сокращений и условных обозначений, списка литературы, который включает 231 источник, в том числе 30 — иностранных авторов, списка иллюстративного материала, приложений. Работа иллюстрирована 15 таблицами и 7 рисунками.

2 ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2.1 Материалы и методы исследования

Работа выполнялась при кафедре биологической и органической химии ФГБОУ ВО «Казанская государственная академия ветеринарной медицины им. Н.Э. Баумана» и БУ УР «Алнашская районная станция по борьбе с болезнями

животных». Производственные опыты проводились в условиях ООО «Решительный» и СПК колхоз «Прогресс» Алнашского района УР. Лабораторные исследования осуществляли в аккредитованной и аттестованной лаборатории БУ УР «Можгинская межрайонная ветеринарная лаборатория» с использованием общепринятых методов исследований.

Для проведения научно-практических опытов применяли препараты Ферраминовит и Стимулин, которые разработаны на кафедре биологической и органической химии ФГБОУ ВО «Казанская ГАВМ им. Н.Э. Баумана».

Кровь у животных для исследований брали из яремной вены, в утренние часы до кормления, с соблюдением правил асептики и антисептики.

Подсчёт эритроцитов и лейкоцитов проводили при помощи счётной камеры с сеткой Горяева. Определение гемоглобина осуществляли методом визуальной колориметрии в гемометре Сали.

Для подсчёта лейкоформулы окрашивали мазки крови по Романовскому-Гимза и использовали счётчик лабораторный С-5. В работе использовали микроскоп Minimed 501. Гематологические исследования выполняли по методике, описанной Г.А. Симоняном и Ф.Ф. Хисамутдиновым (1995).

Общий белок в сыворотке крови определяли рефрактометрическим методом с помощью рефрактометра ИРФ-454 Б 2М. Определение белковых фракций в сыворотке крови проводили нефелометрическим методом на фотометре фотоэлектрическом КФК-3.

Определение общего кальция в сыворотке крови проводили комплексометрическим методом по Уилкинсону. Щелочной резерв, в плазме крови устанавливали диффузным методом. Каротин в сыворотке крови определяли фотометрическим методом.

Показатели фосфора, глюкозы, мочевины, железа, цинка, меди и магния определяли на приборе фотометр лабораторный медицинский Віо Chem Sa. Для этого использовали набор реагентов для определения глюкозы в биологических жидкостях глюкозооксидазным методом «Глюкоза-АГАТ». Использовали наборы реагентов для определения концентрации железа (магния, меди, цинка) в сыворотке (плазме) крови колориметрическим методом без депротеинизации, набор реагентов для определения концентрации мочевины в биологических жидкостях диацетилмонооксимовым методом.

В первой серии опытов изучали влияние препарата Ферраминовит на обмен веществ у коров. В опыт были взяты 10 лактирующих коров чернопестрой породы в период максимальной их продуктивности в возрасте трех лет. Животные были разделены на две равные группы по пять голов в каждой. Коровам контрольной группы препарат не вводили. Коровам опытной группы парентерально вводили комплексный препарат Ферраминовит по схеме: внутримышечно в дозе 10 см³ с интервалом 7 дней трехкратно с соблюдением правил асептики и антисептики.

Вторую серию опытов проводили на телятах с целью определения влияния препарата Ферраминовит на морфобиохимические показатели крови.

Из телят в возрасте от одного до девяти суток, сформировали две группы – опытную и контрольную по пять голов в каждой. Телятам опытной группы препарат вводили внутримышечно двукратно в дозе 7 см³ первый раз и повторно через четыре дня в дозе 10 см³. Животным контрольной группы препарат не вводили.

В третьей серии опыта изучали влияние препарата Стимулин на морфобиохимические показатели крови молодняка крупного рогатого скота, при задержке их роста, а также влияние препарата на ростовые показатели телят. Для проведения опыта были сформированы четыре группы телят в возрасте трех месяцев. В первую и вторую группы вошли телочки по шесть голов в каждой, в третью и четвертую — бычки по пять голов в каждой. Телятам первой и третьей групп (опытные) Стимулин вводили внутримышечно в дозе 2 мл трехкратно с интервалом 10 дней. Вторая и четвёртая группы служили контролем, препарат им не применялся.

четвертой серии опытов изучали влияние железосодержащих Ферраминовит Ферранимал-75 препаратов И на гематологические биохимические показатели крови новорожденных телят. Для проведения опыта из новорожденных телят в возрасте от двух до 10 суток были сформированы три группы по шесть телят в каждой. Телятам первой опытной группы в дозе 10 см³ трехкратно с внутримышечно Ферраминовит вводили интервалом три дня. Телятам второй опытной группы Ферранимал-75 вводили внутримышечно в дозе 7 см³ двукратно с интервалом 10 дней. Животным третьей (контрольной) группы препараты не вводили.

В период опыта у части телят выявляли признаки простой формы диспепсии. В контрольной группе применяли схему лечения, принятую в хозяйстве. В опытных группах при заболевании телят дополнительно к схеме лечения вводили Ферраминовит и Ферранимал-75 по вышеуказанной схеме.

Полученные в результате исследований цифровые данные подвергали вариационно-статистической обработке с применением критерия достоверности Стьюдента на персональном компьютере с использованием программы Microsoft Excel. Различия считали статистически значимыми при p<0,01.

2.2 Изучение распространения нарушений минерального обмена среди крупного рогатого скота в Удмуртской Республике

Биохимические исследования сыворотки крови крупного рогатого скота, проведенные в 2011-2013 гг. в УР, показывают, что недостаток основных микроэлементов в организме животных остается значительным.

Средние значения за анализируемый период времени с пониженным содержанием ниже физиологических норм составили по кобальту 85,5 % проб, селену 60,6 %, меди 60,3 %, железу 50,7 %, цинку 40,0 % проб. Наименьший недостаток был отмечен по магнию в 24,9 % пробах. Таким образом, можно сделать вывод, что на территории УР среди крупного рогатого скота

проявляется, как в скрытой, так и в клинической форме ряд эндемических болезней, зачастую протекающих в смешанной форме.

Проведённый нами анализ по результатам биохимического исследования сыворотки крови коров в хозяйствах Алнашского района УР за 2013-2015 гг. показал значительный дефицит микроэлементов у коров и подтвердил данную динамику, выявленную ранее по УР.

Из проведенного нами анализа следует, что в Алнашском районе УР в 2013 г. снижение от физиологической нормы, в сыворотке крови коров отмечалось по меди в 37,1 % проб, железу – в 40,0 %, цинку – в 53,9 %, селену – в 76,0 %, кобальту – в 88,0 % от числа исследованных проб. По магнию проб с пониженным его содержанием не выявлено. В 2014 г. значительное снижение от физиологической нормы было выявлено по содержанию цинка в крови в 60,0 % случаев, железа в 32,5 %, меди в 30,0 %, магния в 23,3 % проб. В 2015 г. данные показатели составили 41,8; 41,8; 38,8; 45,2 % соответственно.

2.3 Изучение влияния препарата Ферраминовит на биохимические показатели крови коров

На фоне применения препарата Ферраминовит были изучены биохимические показатели сыворотки крови коров. Установлено, что концентрация общего белка у коров в обеих группах до начала введения препарата находилась в пределах нормы и составляла $80,44\pm2,43$ - $86,24\pm2,43$ г/л. По окончании опыта в обеих группах среди коров произошло незначительное снижение белка в опытной до $76,38\pm2,59$ г/л (p<0,01), в контрольной – $71,92\pm2,25$ г/л (p<0,01), или соответственно на 11,4 и 10,6 %.

Так же в начале опыта в обеих группах отмечалось снижение содержания мочевины $(1,8\pm0,42-2,4\pm0,27\,$ ммоль/л) ниже физиологической нормы. В конце исследования уровень мочевины в контрольной группе составил $1,20\pm0,30\,$ ммоль/л (p<0,01), в опытной $-1,69\pm0,25\,$ ммоль/л. Таким образом, снижение данного показателя у контрольных коров было более значительным, и составило $50,0\,$ % против $6,1\,$ % в группе опытных коров.

В конце исследования в опытной группе коров происходило увеличение содержания отдельных фракций белка. Так, отмечен рост альбуминов с $46,40\pm2,20$ до $47,50\pm1,53$ %, α -глобулинов с $13,40\pm3,21$ до $13,75\pm1,79$ %, β -глобулинов с $15,0\pm1,80$ до $25,75\pm1,44$ % (p<0,01), или соответственно на 2,4; 2,6; 71,7 %. При этом в контрольной группе коров произошло снижение содержания альбуминов до $40,75\pm2,64$ %, α -глобулинов до $11,25\pm2,64$ % от первоначальных значений, или соответственно на 16,5 и 21,9 %.

Содержание β -глобулинов в группе контрольных коров выросло (p<0,01) с 14,40±4,16 до 29,0±1,70 %, или на 101,4 %. Уровень γ -глобулинов в конце опыта снижался в обеих группах: в опытной с 25,20±3,42 до 13,0±4,03 % (p<0,01), в контрольной с 22,40±2,11 до 19,6±2,44 %, или соответственно на 48,4 и 15,2 %. Содержание неорганического фосфора в крови у коров в обеих группах в начале опыта находилось в пределах нормы (5,65±0,45-5,82±0,45 мг%). В конце опыта у коров в опытной группе значение показателя

увеличилось на 23,7 % и составило 6,99 \pm 0,80 мг%. В контрольной группе коров было отмечено более значительное увеличение (p<0,01) концентрации неорганического фосфора в крови — до 7,66 \pm 0,58 мг%, т.е. повышение составило 31,6 %, что на 7,9 % было выше, чем в опытной группе коров.

Содержание каротина в опытной группе до введения препарата находилось ниже физиологической нормы и составляло 0.31 ± 0.11 мг%. В конце опыта значение показателя увеличилось (p<0.01) до 0.55 ± 0.05 мг% или на 77,4%. В контрольной группе коров содержание каротина за период наблюдения практически не изменилось и составляло $0.43\pm0.05-0.45\pm0.08$ мг%, т.е. повышение составило 4.7%. Уровень глюкозы в крови в обеих группах, на протяжении всего времени исследования находился ниже физиологического значения. Так, в опытной группе значение показателя выросло с 30.96 ± 3.16 до 34.81 ± 6.07 мг%, или на 12.4%, в контрольной группе показатель составил $34.23\pm5.0-34.32\pm0.99$ мг%. В результате проведенных исследований можно сделать вывод, что введение препарата Ферраминовит коровам опытной группы способствовало стабилизации в крови уровня глюкозы.

В ходе проведенных исследований было установлено, что содержание цинка в начальный период опыта в обеих группах находилось ниже физиологической границы, и составляло в опытной группе $94,44\pm28,34$ мкг%, в контрольной — $87,99\pm45,93$ мкг% (таблица 1). К концу исследования значение показателя в обеих группах выросло и составило в опыте $111,47\pm13,03$ мкг%, в контроле $136,08\pm14,0$ мкг%, увеличившись соответственно на 18,0 и 54,7%.

Таблица 1 – Содержание микроэлементов в сыворотке крови коров при использовании препарата Ферраминовит, (M±m)

Показатель	Физио- логи- ческая норма	Контрольная группа (n=5)		Опытная группа (n=5)	
		до опыта	через 35 дн.	до опыта	через 35 дн.
Цинк, мкг%	100-150	87,99±45,93	136,08±14,0	94,44±28,34	111,47±13,03
Медь, мкг%	80-120	67,12±4,36	175,15±45,44*	68,11±6,25	175,65±31,44
Железо, мкг%	100-160	67,23±17,83	51,29±13,89	64,66±9,25	97,22±16,62**
Магний, мг%	2-3	5,21±1,07	2,63±0,09*	5,94±0,65	2,48±0,09*

Примечание:* - достоверно по сравнению с исходным уровнем (p<0,01); ** - достоверно по сравнению с контрольной группой (p<0,01)

Показатель уровня микроэлемента меди в обеих группах коров при первичном исследовании находился ниже физиологической границы, и составил в контрольной $67,12\pm4,36$ мкг%, в опытной $-68,11\pm6,25$ мкг%. На

заключительном этапе показатели составили $175,15\pm45,44$ мкг% (p<0,01) и $175,65\pm31,44$ мкг%, увеличившись соответственно на 161,0 и 158,0 %.

Содержание микроэлемента железо в первоначальных пробах крови было на 33,8-35,3 % ниже установленной физиологической нижней границы в обеих группах. В ходе эксперимента в опытной группе коров значение показателя достоверно выросло до $97,22\pm16,62$ мкг% (p<0,01). При этом в контрольной группе уровень железа в крови имел тенденцию к ещё большему снижению, и составил $51,29\pm13,89$ мкг%. Таким образом, значение показателя железо в опытной группе увеличилось на 50,4 % по сравнению с фоновым уровнем, в контрольной группе животных значение показателя, напротив, снизилось на 23,7 %. Значение показателя микроэлемента магний в обеих группах коров к концу опыта снижалось (p<0,01), а именно в контрольной – на 49,5 %, в опытной – на 58,3 %, достигнув физиологических границ.

2.4 Влияние препарата Ферраминовит на морфологические показатели крови новорожденных телят

Выявлено, что по окончании опыта после использования препарата Ферраминовит в опытной группе телят количество эритроцитов в крови было на $2,52\times10^{12}$ /л выше, по сравнению с исходными показателями, увеличившись на 69,8% (p<0,01), уровень гемоглобина увеличился на 30,02 г/л, или на 60,0% (p<0,01) (таблица 2). В контрольной группе значения этих показателей увеличивались медленнее соответственно на 45,3 и 38,0%.

Цветовой показатель в начале опыта в обеих опытных группах находился в пределах верхней границы нормы и равнялся 0.98 ± 0.11 - 0.99 ± 0.24 %. У телят опытной группы в конце исследования наблюдали увеличение значения данного показателя, который составил 1.05 ± 0.08 %, увеличившись на 6.1 %. В контрольной группе произошло снижение показателя до нижней границы нормы -0.70 ± 0.08 % (p<0.01), или на 28.6 %. Количество лейкоцитов в крови телят в конце исследования в опытной группе снизилось в абсолютном значении на 1.48×10^9 /л, или на 19.2 %, а сегментоядерных нейтрофилов — на 64.1 % (p<0.01). В контрольной группе телят значения указанных показателей снизились соответственно на 1.48×10^9 /л, или на 19.3 и 63.8 % (p<0.01).

Таблица 2 – Некоторые морфологические показатели крови телят при введении препарата Ферраминовит, (М±m)

Показатель	Контрольна	я группа (n=5)	Опытная группа (n=5)		
	1-й день	20-й день	1-й день	20-й день	
Эритроциты, 1012/л	3,66±0,27	5,35±0,76*	3,61±0,68	6,13±0,58*	
Гемоглобин, г/л	50,76±0,33	70,02±0,64*	50,12±0,15	80,14±0,63*	
Лейкоциты, $10^9/л$	7,68±0,94	6,20±0,58	7,72±0,77	6,24±0,31	
Цветовой показатель, %	0,98±0,11	0,70±0,08*	0,99±0,24	1,05±0,08**	

Примечание: * - достоверно по сравнению с исходным уровнем (p<0,01); ** - достоверно по сравнению с контрольной группой (p<0,01)

2.5 Влияние препарата Ферраминовит на биохимические показатели сыворотки крови новорожденных телят

При первичном биохимическом профиле установили, что в сыворотке крови у 50 % новорожденных телят наблюдалась гипопротеинемия, у 90 % - гипергликемия, резервная щёлочность была снижена в 100 % проб, содержание неорганического фосфора увеличено в 1,5-2 раза выше нормы, у 90 % телят соотношение кальция к фосфору равнялось 0,92-1:1.

При биохимическом исследовании сыворотки крови по окончании опыта после применения телятам препарата Ферраминовит содержание общего белка увеличилось в опытной группе с $55,98\pm1,59$ до $60,62\pm1,59$ г/л (p<0,01), т. е. на 8,3 %, в контрольной с $54,82\pm1,59$ до $62,68\pm3,17$ г/л (p<0,01), или на 14,3 % (таблица 3). Количество альбуминов в сыворотке крови в конце исследования в опытной группе уменьшилось с $37,28\pm3,29$ до $35,80\pm2,46$ %, или на 4,0 %. В контроле значение показателя выросло с $34,40\pm0,84$ до $40,0\pm2,24$ %, или на 16,3 %.

Таблица 3 – Значения некоторых биохимических показателей крови

телят при введении препарата Ферраминовит, (M±m)

Показатель	Контрольная группа (n=5)		Опытная группа (n=5)		
	1-й день	20-й день	1-й день	20-й день	
Общий белок, г/л	54,82±1,59	62,68±3,17*	55,98±1,59	60,62±1,59*	
Резервная щелочность, об%СО ²	26,43±2,0	29,12±2,45	28,22±1,58	30,02±1,58	
Кальций общий, мг%	10,0±0,01	10,0±0,01	10,10±0,07	10,0±0,01	
Неорганический фосфор, мг%	10,81±1,62	7,85±2,21	10,01±1,71	10,21±1,18	
Глюкоза, мг%	86,77±14,03	121,33±17,88*	89,99±14,14	93,37±10,45	
Альбумины, %	34,40±0,84	40,0±2,24	37,28±3,29	35,80±2,46	
α-глобулины, %	20,20±7,77	13,40±3,37	19,82±5,89	23,80±3,36**	
β-глобулины, %	22,0±4,50	16,40±1,68	22,20±3,27	15,80±3,05*	
ү-глобулины, %	23,40±4,41	30,20±3,21	20,70±5,45	24,60±3,31**	

Примечание: * - достоверно по сравнению с исходным уровнем (p<0,01); ** - достоверно по сравнению с контрольной группой (p<0,01)

Следует отметить, что содержание α -глобулинов в опытной группе в конце исследования достоверно выросло на 20,1 % (p<0,01), γ -глобулинов — на 18,8 % (p<0,01), β -глобулинов снизилось на 28,8 % (p<0,01) и составило соответственно 23,80±3,36; 24,60±3,31; 15,80±3,05 %. В контрольной группе телят произошло увеличение значений показателей только среди γ -глобулина на 29,1 % составив 30,20±3,21 %, показатели α - и β -глобулинов снизились на 33,7 и 25,5 % и составили соответственно 13,40±3,37; 16,40±1,68 %.

Показатель резервной щёлочности крови телят в опытной группе вырос с $28,22\pm1,58$ до $30,02\pm1,58$ об% CO^2 , или на 6,4 %, в контроле данный показатель повысился с $26,43\pm2,0$ до $29,12\pm2,45$ об% CO^2 , или на 10,2 %. При этом в обеих группах телят щелочной резерв в крови продолжал оставаться низким и не достиг границ физиологической нормы.

Концентрация глюкозы в крови телят в опытной группе в конце исследования возрастала с $89,99\pm14,14$ до $93,37\pm10,45$ мг%, увеличившись на 3,7%. При этом в контрольной группе значение данного показателя выросло значительнее, а именно с $86,77\pm14,03$ до $121,33\pm17,88$ мг% (p<0,01), или на 39,8 %. Таким образом, гипергликемия в контрольной группе животных продолжала нарастать.

2.6 Сравнительная эффективность препаратов Ферраминовит и Ферранимал-75 на гематологические показатели у телят

Установлено, что в ходе исследования содержание эритроцитов во всех группах, в начале опыта, находилось на нижней границе физиологической нормы соответственно $5,82\pm0,14;~5,69\pm0,334;~5,42\pm0,55\times10^{12}/\pi$. В конце опыта количество эритроцитов увеличилось в обеих опытных группах — в 1-й значение показателя составило $6,98\pm0,39\times10^{12}/\pi$ (p<0,01), или на 19,9 % больше, чем в начале опыта, во 2-й — $6,56\pm0,53\times10^{12}/\pi$ — на 15,3 % (p<0,01), в 3-й группе значение показателя снизилось до $5,22\pm0,30\times10^{12}/\pi$ — на 3,7 %. В 1-й группе, где использовали Ферраминовит количество эритроцитов к концу опыта достоверно увеличивалось (p<0,01) по отношению к 3-й контрольной группе. У телят, которым вводили Ферраминовит значение данного показателя было на 4,6 % больше, чем в группе животных, которым применяли Ферранимал-75 и на 23,6 % больше чем в контрольной группе.

При первичном исследовании крови новорожденных телят выявили снижение уровня гемоглобина во всех трёх группах ниже физиологической нормы. Значение показателя гемоглобина увеличивалось в 1-й группе — до $70,77\pm0,48$ г/л (p<0,01); во 2-й группе — до $70,70\pm0,86$ г/л (p<0,01); в 3-й группе — до $70,63\pm0,70$ г/л (p<0,01), или соответственно на 19,5; 12,1; 17,1 %. Таким образом, содержание гемоглобина в крови в группе животных, которым применялся Ферраминовит, было выше на 7,4 %, чем в группе с использованием Ферранимал-75.

В начале опыта цветовой показатель во всех трех группах находился ниже физиологической нормы, что указывало на развитие у телят гипохромной анемии. В конце исследования во всех группах наблюдали увеличение значения показателя, который в 1-й группе составил 0.96 ± 0.10 % (p<0,01); во 2-й – 0.83 ± 0.05 % (p<0,01); в 3-й – 0.87 ± 0.04 %, или соответственно на 43,3; 50,9; 14,5 % больше, чем в начале опыта. Таким образом, к концу опыта цветовой показатель в 1-й группе увеличился по отношению ко 2-й группе — на 15,6 %, а по отношению к 3-й группе (контрольной) — на 10,34 %.

В начале опыта до введения изучаемых нами препаратов животным установили, что количество лейкоцитов во всех группах находилось в пределах

верхней границы физиологической нормы и составляло в 1-й группе — $11,10\pm0,74\times10^9/\pi$; во 2-й — $10,30\pm0,63\times10^9/\pi$; в 3-й — $9,30\pm0,26\times10^9/\pi$. К концу эксперимента в крови телят во всех группах произошло снижение количества лейкоцитов и значение изучаемого показателя нормализовалось в пределах физиологической нормы, составив в 1-й группе — $8,13\pm1,28\times10^9/\pi$ (p<0,01); во 2-й — $6,0\pm0,75\times10^9/\pi$ (p<0,01) и в 3-й — $5,17\pm0,97\times10^9/\pi$ (p<0,01), или снизилось соответственно на 26,7;41,7;44,4%.

2.7 Сравнительная эффективность препаратов Ферраминовит и Ферранимал-75 на биохимические показатели сыворотки крови телят

В начале опыта содержание общего белка во всех трех группах, находилось ниже границы физиологической нормы (таблица 4). По окончании опыта значение данного показателя увеличилось в 1-й группе телят на $22,1\,\%$ (p<0,01); во 2-й — на $3,0\,\%$; в 3-й — на $8,2\,\%$. Таким образом, содержание общего белка в крови в 1-й группе телят, где применялся Ферраминовит, был соответственно больше на $19,1\,$ и $14,0\,\%$, чем во 2-й и 3-й группах.

Таблица 4 – Биохимические показатели сыворотки крови телят при

введении препаратов Ферраминовит и Ферранимал-75, (М±m)

Показатель	Группа (n=6)					
	первая опытная вторая опыт (Ферраминовит) (Ферранимал			третья контрольная		
	1-й день	22-й день	1-й день	22-й день	1-й день	22-й день
Общий белок, г/л	52,50±0,01	64,12±4,04*	63,18±3,84	65,10±4,18	59,30±3,84	64,13±4,36
Резервная щелочность, об% CO ²	31,50±1,64	31,36±2,24	29,71±3,27	39,57±0,82**	27,75±1,10	33,60±1,68*
Глюкоза, мг%	84,37±4,84	104,68±11,67*	83,64±5,08	75,43±13,51	97,73±12,19	91,27±9,17
Кальций общий, мг%	11,58±0,29	11,67±0,42	9,96±0,05	9,83±0,12	11,79±0,40	12,17±0,09
Неорганический фосфор, мг%	6,33±0,32	7,83±0,78*	6,79±0,36	8,38±0,41**	6,08±0,34	6,86±0,64
Мочевина, ммоль/л	3,44±0,15	2,31±0,31*	4,64±0,78	5,44±0,49**	4,11±0,39	2,45±0,41*
Альбумины, %	38,83±1,37	55,0±2,26**	39,33±4,64	51,50±3,59*	38,17±6,42	48,83±1,68
α-глобулины, %	18,83±4,60	12,67±1,25*	16,83±1,95	19,17±1,93**	18,0±3,17	15,67±1,08
β-глобулины, %	8,67±2,07	13,83±1,45*	8,0±1,81	8,17±2,03	8,33±1,08	11,50±1,95
γ-глобулины, %	33,67±3,72	18,50±2,57	35,84±4,07	21,16±2,29*	35,50±7,18	24,0±2,68*

Примечание:* - достоверно по сравнению с исходным уровнем (p<0,01); ** - достоверно по сравнению с контрольной группой (p<0,01)

В начале исследования содержание α -глобулинов в сыворотке крови во всех трех группах телят находилось в границах физиологической нормы. К концу опыта значение показателя в группах снизилось соответственно в 1-й — на 32,7 (p<0,01); в 3-й — на 12,9 %. Во 2-й группе значение показателя достоверно увеличилось на 22,3 % (p<0,01) по отношению к 3-й контрольной группе. Во всех трех группах телят первоначальное содержание β -глобулинов в сыворотке крови было ниже физиологической нормы. К концу опыта значение показателя увеличилось в 1-й и 3-й группах на 59,5 (p<0,01) и 38,1 %, достигнув границ физиологической нормы. Во 2-й группе значение показателя, практически оставалось на прежнем уровне.

К концу опыта содержание γ -глобулинов в сыворотке крови телят во всех трех группах снизилось: в 1-й — на 45,1; во 2-й — на 41,4 (p<0,01) и в 3-й — на 32,4 % (p<0,01), при этом значение показателя оказалось ниже физиологической нормы.

До введения телятам препаратов содержание глюкозы в крови в зависимости от группы составляло $83,64\pm5,08-97,73\pm12,19$ мг%. В конце опыта значение исследуемого показателя превысило исходное значение в 1-й группе на 24,0 % (p<0,01), во 2-й и 3-й снизилось на 10,0 и 6,6% и соответственно составило $104,68\pm11,67;75,43\pm13,51$ и $91,27\pm9,17$ мг%.

Во всех группах резервная щёлочность в крови на протяжении эксперимента оставалась ниже физиологической нормы и варьировала от $27,75\pm1,10$ до $31,50\pm1,64$ об% CO^2 . К концу опыта значение показателя в 1-й группе выросло на 23,7 % (p<0,01), во 2-й группе на 33,2 % (p<0,01), в 3-й — на 21,1 % и соответственно составило $31,36\pm2,24$; $39,57\pm0,82$ и $33,60\pm1,68$ об% CO^2 .

В начале опыта содержание цинка во всех трех группах составляло от $159,53\pm24,87$ до $163,48\pm15,66$ мкг%. К концу исследования его содержание в крови телят во всех группах достоверно (p<0,01) снизилось в 1-й — на 46,5; во 2-й — на 36,9 и в 3-й — на 54,0 %.

В начале эксперимента содержание в крови железа в 1-й и 3-й группах находилось в пределах физиологической нормы, во 2-й — ниже нормы и соответственно составило $143,90\pm20,80;\ 109,75\pm9,52$ и $88,49\pm14,12$ мкг%. По окончании опыта содержание железа в крови в 1-й группе телят снизилось на 11,0 %, во 2-й — увеличилось на 41,5 %, в 3-й — произошло снижение на 31,8 % (р<0,01) и значение показателя оказалось ниже физиологической нормы.

2.8 Эффективность применения препаратов Ферраминовит и Ферранимал-75 при лечении сочетанной анемии и диспепсии у новорожденных телят

Установили, что за период опыта в 1-й опытной группе с признаками диспепсии было выявлено 2 теленка; во 2-й - 3 и в 3-й - 4 теленка. Состояние остальных животных было удовлетворительным, прием корма был сохранен, при этом некоторые телята выглядели вялыми, апатичными, а при осмотре у них слизистых оболочек отмечалась их бледность.

Использование препаратов Ферраминовит и Ферранимал-75 в комплексном лечении телят при одновременном развитии и течении анемии и диспепсии показало более высокую лечебную эффективность препарата Ферраминовит. Так, в 1-й и 3-й группах выздоровело 100,0 % телят, во 2-й – 33,3 %, т.е. на 66,7 % меньше, чем в 1-й группе.

После проведённого лечения во 2-й группе два теленка были вынужденно выбракованы. Продолжительность лечения в 1-й группе была короче, по отношению ко 2-й и 3-й соответственно на 3 и 1 сутки.

Стоимость затраченных препаратов, из расчёта на одного телёнка, составила при применении Ферраминовит — 26,1 руб. При использовании Ферранимал-75 затраты на препарат составили 44,8 руб. Материальные затраты на одного теленка при использовании Ферраминовит оказались на 18,7 руб. меньше, чем при применении Ферранимал-75.

Таким образом, включение в комплексную терапию сочетанного течения анемии и диспепсии у телят препарата Ферраминовит показало более эффективное его действие, чем применение препарата Ферранимал-75.

2.9 Влияние препарата Стимулин на клинико-гематологические и ростовые показатели у телят-гипотрофиков при нарушении обмена веществ в организме

В начале опытного периода биохимическими исследованиями установили у животных опытных и контрольных групп, что уровень общего белка в сыворотке крови находился ниже физиологической границы — $52,50\pm0,01-56,85\pm1,09$ г/л.

На 30-й день исследования концентрация в сыворотке крови общего белка у телят составила от $59,46\pm1,30$ до $64,14\pm2,93$ г/л. Увеличение значения показателя произошло во всех группах (p<0,01) среди телочек в 1-й — на 15,5%, во 2-й — на 12,8%, среди бычков в 3-й группе на 10,8%, в 4-й — на 22,2%.

На начальном этапе в обеих группах бычков отмечали более низкую концентрацию в сыворотке крови альбуминовой фракции, чем в группах у телочек. В дальнейшем в течение опыта у телочек 1-й и 2-й групп содержание в сыворотке крови альбуминов, снизилось на 37,5 и 33,1 %. У бычков в 3-й группе значение данного показателя увеличилось на 6,1 % (p<0,01), при этом в 4-й группе произошло снижение на 3,8 %.

Первоначально в опытных группах уровень в сыворотке крови α-глобулинов находился в пределах верхней границы физиологической нормы, а в контрольных группах животных превышал её. К концу проведенного исследования значение этого показателя выросло в 1-й, 2-й и 3-й группах соответственно на 14,1; 5,8; 19,6 %, а в 4-й — снизился на 23,2 %. Таким образом, за период исследования в опытных группах телочек и бычков содержание в сыворотке крови α-глобулина возросло соответственно на 8,3 и 42,8 % по сравнению с контрольными животными.

К концу опыта концентрация β-глобулинов в 1-й, 2-й группах телочек увеличилась соответственно на 68,1 и 58,9 %. В 3-й и 4-й группах бычков произошло снижение значения показателя соответственно на 38,6 и 10,5 %.

На первоначальном этапе, анализируя содержание γ-глобулинов было выявлено снижение его уровня в 1-й, 2-й и 4-й группах. На 30-й день исследований значение показателя в указанных группах увеличилось соответственно на 71,9; 57,7 и 45,6 %, в 3-й группе произошло снижение указанного показателя на 9,1 %.

В начале опыта величина щелочного резерва в сыворотке крови составляла $25,39\pm1,97-34,50\pm1,28$ об% CO^2 , что было ниже физиологической нормы в 2 раза во всех четырёх группах. При завершении исследований значение показателя имело наименьшее снижение в 1-й опытной группе на 14,1 %, во 2-й, 3-й и 4-й — произошло более весомое снижение соответственно на 38,7; 54,6 (p<0,01); 58,4 (p<0,01) %.

В начале опыта концентрация неорганического фосфора незначительно превышала физиологические границы, особенно в опытных группах. По окончании опыта во всех исследуемых группах указанный показатель восстановился и был в пределах физиологической нормы $5,73\pm0,76-6,98\pm0,57$ мг%, при этом было отмечено, что наибольшее снижение происходило в группах бычков в 3-й достоверно (p<0,01) на 13,8 %, в 4-й – на 17,2 %.

К концу исследования уровень глюкозы в сыворотке крови во всех группах снижался (p<0,01). При этом наименьшее снижение было выявлено в первой и третьей опытных группах на 68,0 и 75,8 %, против 85,2 и 86,4 % во второй и четвёртой контрольных группах соответственно.

В начале опыта во всех четырех группах телят количество лейкоцитов находилось в пределах физиологической нормы. В конце опыта в опытных и контрольных обеих половозрастных групп телят значение исследуемого показателя в крови возросло в 1-й группе на 23,0; во 2-й — на 6,7; в 3-й — на 36,7 и в 4-й — на 83,9 %.

Полученные нами данные свидетельствуют о положительном влиянии препарата на рост животных. Среднесуточный прирост телочек опытной группы за период наблюдения (60 суток) составил 383,3 г., у контрольных – только 341,1 г, т.е был на 42,2 г, или на 12,4 % выше чем в контрольной группе. Аналогичная тенденция наблюдалась и у бычков. Среднесуточный прирост бычков, опытной группы составил 430,2 г, а в контрольной 366,3 г, т.е был на 64,0 г, или на 17,5 % выше по сравнению с контрольной группой бычков.

Экономический эффект от применения препарата Стимулин на одну телочку составил 294 руб., на одного бычка 451 руб. при стоимости 1 кг живой массы 120 руб.

Таким образом, применение препарата Стимулин молодняку КРС способствовало нормализации обменных процессов и гемопоэза, что приводило к усилению их роста.

2.10 Внедрение полученных результатов научной работы в производство

решения имеющихся проблем Для животноводстве сельскохозяйственных предприятий Алнашского района УР было необходимо внедрить для широкого применения разработать И использование исследованных нами комплексных препаратов Ферраминовит и Стимулин. Для решения поставленной задачи нами была разработана технологическая схема применения КРС данных комплексных препаратов.

внедрения результатов исследований В производство были подготовлены нормативно-технических документа: «Временные два ветеринарные правила по применению Ферраминовита для коррекции нарушений обмена веществ, повышения резистентности, профилактики и «Временные ветеринарные правила по лечения анемии у животных» и применению стимулина для повышения резистентности и стимуляции роста животных», которые рассмотрены и одобрены научно-техническим советом Главного управления ветеринарии УР. Препараты Ферраминовит и Стимулин были рекомендованы Главным управлением ветеринарии УР к широким производственным испытаниям в сельскохозяйственных предприятиях УР.

3 ЗАКЛЮЧЕНИЕ

С учетом широкой распространенности, среди сельскохозяйственных животных, нарушений обмена веществ, необходимости выяснения их распространения по УР и изыскания новых лечебно-профилактических средств, в данной диссертационной работе были изучены действия комплексных препаратов Ферраминовит и Стимулин на организм крупного рогатого скота, определены действия данных препаратов при нарушениях обмена веществ в организме животных, особенно минерального, а также влияние препаратов на гематологические и биохимические показатели крови телят и коров.

Полученные в ходе исследований результаты позволили сделать следующие выводы:

- 1. Результаты биохимических исследований сывороток крови коров в УР за 2011-2013 гг. свидетельствуют о широком распространении и полиэтиологичности нарушений обмена веществ у животных, обусловленных недостатком микроэлементов. Проведенный анализ сывороток крови у коров в Алнашском районе УР за 2013-2015 гг. показал аналогичную тенденцию, как и в целом по УР.
- 2. Трехкратное внутримышечное введение препарата Ферраминовит коровам оказывало положительное влияние на биохимические показатели крови животных: произошло увеличение содержания β-глобулинов на 71,1 %, каротина на 77,4 %, глюкозы на 12,4 %. Также препарат стабилизировал нарушенное кальций-фосфорное соотношение, способствовал увеличению концентрации меди на 158,0 %, железа на 50,4 % и цинка на 18,0 %.
- 3. Проведенные исследования крови у новорожденных телят выявили значительные нарушения функций кроветворения, наблюдались клинические

проявления алиментарной анемии. Применение при данных нарушениях препарата Ферраминовит предупреждало развитие анемии у новорожденных телят, что подтверждается увеличением количества эритроцитов на 69.8%, гемоглобина на 60.0%, цветного показателя на 6.1%, содержание α - и γ -глобулинов повысилось соответственно на 20.1 и 18.8%.

- 4. При проведении сравнительных испытаний препаратов Ферраминовит и Ферранимал-75 на телятах установлено, что содержание гемоглобина было более высоким в группе телят, где применяли Ферраминовит. Помимо этого использование препарата Ферраминовит приводило к увеличению в крови показателей общего белка на 22,1 %, альбуминов на 41,7 %, β-глобулинов на 59,5 %, резервной щелочности на 23,7 %. Оба препарата поддерживали содержание железа и цинка на физиологическом уровне, в сравнении с животными контрольной группы.
- 5. Используемые препараты Ферраминовит и Ферранимал-75 в комплексном лечении телят, при сочетанном течении анемии и диспепсии, показало более высокую лечебную эффективность препарата Ферраминовит, где выздоровело 100% заболевших, продолжительность лечения составила 3суток, что на 3 суток меньше, чем при лечении препаратом Ферранимал-75.
- 6. Применение препарата Стимулин на телятах-гипотрофиках способствует активизации обменных процессов выразившееся в стабилизации показателей крови, а также сказывается положительно на их росте. Прирост живой массы телочек опытной группы с трех до пяти месячного возраста был на 2,5 кг, бычков на 3,8 кг выше показателей контрольных групп. Экономический эффект на одну телочку составил 294 рубля, на одного бычка 451 рубль.

ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

1. Для профилактики и терапии нарушений обмена веществ у крупного рогатого скота рекомендуется применение комплексных препаратов Ферраминовит и Стимулин согласно НТД «Временные ветеринарные правила по применению Ферраминовита для коррекции нарушений обмена веществ, повышения резистентности, профилактики и лечения анемии у животных» и «Временные ветеринарные правила по применению Стимулина для повышения резистентности и стимуляции роста животных», которые рассмотрены и одобрены научно-техническим советом Главного управления ветеринарии УР», одобренных НТС ГУВ Удмуртской Республики (протокол №7 от 26.07.2016г.).

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Алимов, А.М. Влияние Ферраминовита на показатели крови и профилактику заболеваемости новорожденных телят / А М. Алимов, А.В. Злобин, М.А. Алимов // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. 2014. Т. 219. С. 18-22.*
- 2. Алимов, А.М. Применение Ферраминовита при гипомикроэлементозах у коров / А.М. Алимов, А.В. Злобин // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. 2015. Т. 221 (I). С. 18-21.*
- 3. Злобин, А.В. Препарат Ферраминовит для регуляции обмена веществ у крупного рогатого скота / А.В. Злобин, А.М. Алимов // Сборник научных трудов XV Международной научно-практической конференции аспирантов и молодых ученых «Знания молодых: наука, практика и инновации». В 2 ч. Киров: ФГБОУ ВПО «ВГСХА», 2015. Ч. 2. Агрономические, биологические, ветеринарные науки. С. 199-204.
- 4. Злобин, А. В. Влияние Стимулина на показатели крови молодняка КРС при нарушении обменных процессов / А.В. Злобин, А.М. Алимов // Научное и кадровое обеспечение АПК для продовольственного импортозамещения: материалы Всероссийской научно-практической конференции. 16-19 февраля 2016 г, г. Ижевск. В 3 т. Ижевск: ФГБОУ ВО «Ижевская ГСХА», 2016. Т. 2. С. 24-27.
- 5. Злобин, А.В. Применение Стимулина для коррекции обменных процессов у телят / А. В. Злобин // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. 2016. Т. 225 (I). С. 35-38.*
- 6. Алимов, А.М. Влияние препаратов Ферраминовит и Ферранимал-75 на показатели крови, лечение и профилактику заболеваемости у телят / А.М. Алимов, А.В. Злобин // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. 2016. Т. 227 (III). С. 7-12.*

Примечание: * - публикации в рецензируемых научных изданиях, рекомендованных ВАК РФ